A LITERATURE REVIEW ON Acinetobacter baumannii AND THE CHALLENGES: INSIGHTS INTO VARIOUS CLINICAL AND PATHOPHYSIOLOGICAL CONDITIONS WITH REFERENCE TO BIOFILM FORMATION.

Authors

  • Md Sahil Anwar PhD. Scholar, Department of Microbiology, Katihar Medical College, Al Karim University, Katihar, Bihar, India
  • Priyanka Paul Biswas  Professor, Department of Microbiology, Katihar Medical College, Al Karim University, Katihar, Bihar, India
  • Aninda Sen Professor, Department of Microbiology, Katihar Medical College, Al Karim University, Katihar, Bihar, India

DOI:

https://doi.org/10.51168/sjhrafrica.v5i9.1388

Keywords:

Acinetobacter baumannii, Biofilm formation, Multidrug resistance, Nosocomial infections, Virulence factors, Quorum sensing

Abstract

Acinetobacter baumannii is a Gram-negative multidrug-resistant pathogen that poses a significant threat to public health, particularly in healthcare settings. Its ability to resist desiccation, colonize abiotic surfaces, and form biofilms contributes to its persistence in medical environments. This literature review explores the various clinical and pathophysiological challenges posed by A. baumannii, with a focus on biofilm formation, surface motility, and virulence factors. The bacterial resistance to common antibiotics, including carbapenems, fluoroquinolones, and cephalosporins, exacerbates its role in nosocomial infections such as pneumonia, catheter-associated bacteremia, and soft tissue infections. Understanding the multifaceted nature of A. baumannii virulence can guide future therapeutic strategies aimed at mitigating its impact, particularly in critical care units. The review highlights the need for deeper investigations into virulence mechanisms, biofilm disruption strategies, and iron acquisition systems. Furthermore, it underscores the importance of enhancing infection control measures, improving antibiotic stewardship programs, and developing policies to reduce the incidence of multidrug-resistant infections. This synthesis serves as a guide for researchers, clinicians, and policymakers in addressing the challenges posed by AI. baumannii in clinical settings.

References

Singh H, Thangaraj P, Chakrabarti A. Acinetobacter baumannii: A Brief Account of Mechanisms of Multidrug Resistance and Current and Future Therapeutic Management. Journal of Clinical and Diagnostic Research. 2013 Nov, Vol-7(11): 2602- 2605. Doi: 10.7860/JCDR/2013/6337.3626

Rubina Lone, Azra Shah, Kadri SM, Shabana Lone, Shah Faisal.Nosocomial Multi-Drug- Resistant Acinetobacter Infections-Clinical Findings, Risk Factors and Demographic Characteristics. Bangladesh J Med Microbiol 2009; 03 (01): 34-38

Wong D, Nielsen TB, Bonomo RA, Paul P, Luna and B Brad. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clinical Microbiology Reviews 2017;30(1):409-447.

JohnMFarrow,3rd, GregWells,1 Everett C. Pesci,1. Desiccation tolerance in Acinetobacter baumanniiis mediated by the two-component response regulator BfmR. PLoSOne 2018; Doi:https://doi.org/10.1371/journal.pone.0205638

Joshi SG and Litake GM. Acinetobacter baumannii: An emerging pathogenic threat to public health. World J Clin Infect Dis 2013;3(3):25-36. Doi:10.5495/wjcid.v3.i3.25Available at: http://www. .wjgnet.com/eps/

ClettErridge, OlgaLMoncayo-Nieto, Robert Morgan, Michelle Young, and Ian Poxton. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation viaToll-likereceptor4signalling. Journal of Medical Microbiology 2007;56:165–171

Hayk Minasyan. Sepsis: mechanisms of bacterial injury to the patient. Minasyan Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2019;27:19 Available at: https://doi.org/10.1186/s13049-019-0596-4

Farhana A, Khan YS. Lipopolysaccharide Biochemistry, National Library of Medicine [Internet] Stat Pearls Publishing LLC [updated17/03/2023] cited on 09/06-2024

Falagas ME, Rafailidis PI. Attributable mortality of Acinetobacter baumannii: no longer a controversial issue. CritCare 2007;11(3):134.

Corral J, Pérez-Varela M, Sánchez-Osuna M, Cortés P, Barbé and Aranda J. Importance of twitching and surface-associated motility in the virulence of Acinetobacter baumannii. Virulence 2021; 12(1):2201–2213.Doi: 10.1080/21505594.2021.1950268 PMCID: PMC8451467 PMID: 34515614

Ronish LA, Lillehoj E, Fields JK, Sundberg EJ and Piepenbrink KH. The structure of PilA from Acinetobacter baumannii AB5075 suggests a mechanism for functional specialization in Acinetobacter type IV pili. J. Biol. Chem2019;294(1):218 –230

Cerqueira GM, Kostoulias X, Khoo C, et al. A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway. J Infect Dis. 2014;210(1):46–55.

Geum-Jae Jeong, Fazlurrahman Khan, Nazia Tabassum & Young-Mog Kim. Motility of Acinetobacter baumannii: Regulatory system and controlling strategies. Applied Microbiolbiotechnol. 2023;108(3) Available at: ink.springer.com/article/10.1007/s00253-023-12975-6.

Hing Jian Mea, PhelimVoon Chen Yong, Eng Hwa Wong. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiological Research 2021;247:1-12. doi.org/10.1016/j.micres.2021.126722

Rosenberg E, DeLong, Lory S, Stackebrandt E, Thompson F. 2013. The Prokaryotes: Human Microbiology, 4th ed. Springer, Berlin, Heidelberg, pp. 107–123

Jurate Skerniskyte, Renatas Krasauskas, Christine Péchoux, Saulius Kulakauskas, Julija Armalyte and Edita Sužied˙ eliene. Surface-Related Features and Virulence Among Acinetobacter baumannii Clinical Isolates Belonging to International Clones I and II. Frontiers in Microbiology 2019;9:1-12

Weber BS, Harding CM, and Feldman MF. Pathogenic Acinetobacter: from the Cell Surface to Infinity and Beyond. J. Bacteriol 2015;198,880–887. doi: 10.1128/JB.00906- 15

McConnell MJ, ActisL, and Pachón I. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 2013;37:130–155. Doi: 10.1111/j.1574-6976.2012.00344.x

Chiang SR, Jung F, Tang HJ, Chen CH, Chen CC, Chou HY, et al. Desiccation and ethanol resistances of multidrug-resistant Acinetobacter baumannii embedded in biofilm: the favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. J. Microbiol. Immunol& Infect 2017. Doi: 10.1016/j.jmii.2017.02.003

Zarrilli R, Pournaras S, Giannouli MandTsakris A.Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int. J. Antimicrob Agents 2013;41:11–19. Doi: 10.1016/j.ijantimicag.2012.09.008

Dahdouh E, Gómez-Gil R, Pacho S, Mingorance J, Daoud Z and Suárez M, Clonality, virulence determinants, and profiles of resistance of clinical Acinetobacter baumannii Isolates were obtained from a Spanish hospital. PLoS One 2017;12Doi: 10.1371/journal.pone.0176824

Antunes LC, Visca P and TownerKJ. Acinetobacter baumannii: Evolution of a global pathogen. Pathog Dis 2014;71, 292–301. Doi: 10.1111/2049-632X.12125

Armitano J, Méjean V, and Jourlin Castelli C. (2014). Gram-negative bacteria can also form pellicles. Environ Microbiol. Rep 2014;6:534–544. doi: 10.1111/1758- 2229.12171

Nait Chabane, Marti YS, Rihouey C, AlexandreS, Hardouin J, Lesouhaitier O. et al. Characterization of pellicles formed by Acinetobacter baumannii at the air-liquid interface. PLoS One 2014;9. Doi: 10.1371/journal.pone.0111660

Lee CR, Lee JH, ParkM, Park KS, Bae IK, Kim YB et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options.Front. Cell Infect.Microbiol. 2017;7:55. Doi: 10.3389/fcimb.2017.00055

Muzamil Ahmad Rather, Kuldeep Gupta, and Manabendra Mandal. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021; 52(4): 1701–1718. Doi: 10.1007/s42770-021-00624-x

Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013;77:1–52. Doi: 10.1128/MMBR.00043-12

Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim H. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem.2015;7:493–512. Doi: 10.4155/fmc.15.6.

ToyofukuM, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 2016;80:7–12. doi: 10.1080/09168451.2015.1058701.

Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 2013;64:175–188. Doi: 10.1146/annurev-med-042711-140023.

Jamal M, Tasneem U, Hussain T, Saadia Andleeb S. Bacterial biofilm: its composition, formation and role in human infections. Res Rev J Microbiol Biotechnol 2015;4:1–15.

Amin M, Navidifar T, Shooshtari FS, Rashno Mand FatemehMS, ArshadiJM. Association Between Biofilm Formation, Structure, and the Expression Levels of Genes Related to Biofilm Formation and Biofilm-Specific Resistance of Acinetobacter baumannii Strains Isolated from Burn Infection in Ahvaz, Iran. Infection and Drug Resistance 2019;12:3867-3881

Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litrán T. The pgaABCDlocus of Acinetobacter baumannii encodes the production of poly-beta 1-6-N-acetylglucosamine, which is critical for biofilm formation. JBacteriol 2009;191(19):5953–5963. Doi:10.1128/JB.00647-09

Jian-Xia Zhou, Ding-Yun Feng, Xia Li, Jia-Xin Zhu, Wen-Bin Wu, Tian-tuo Zhang.Advances in research on virulence factors of Acinetobacter baumannii and their potential as novel therapeutic targets. Journal of Applied Microbiology, 2023, 134,1–9 Available at: https://doi.org/10.1093/jambio/lxac089

Karen V. Swanson, Meng Deng & Jenny PY. Ting. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. NatureReviews Microbiol 2019;19:477–489

Hsieh YC, Wang SH, Chen YY et al. Association of capsular types with carbapenem resistance, disease severity, and mortality in Acinetobacter baumannii. Emerg Microbes Infect 2020;9:2094–104.

W John Winderson. How Quorum Sensing Works. American Society for Microbiologists.

Steven T. Rutherford and Bonnie L. Bassler. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harb Perspect Med. 2012 Nov; 2(11) Doi: 10.1101/cshperspect a012427

Imperi ML, Visaggio Dand Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024;15(1):2289769 Available at: https://doi.org/10.1080/21505594.2023.2289769

Gregorio ED, Zarrilli R & Nocera PP. Contact-dependent growth inhibition systems in Acinetobacter. Scient Reports 2019;9(154)

Antunes LC, Imperi F, Towner KJ, et al. Genome-assisted identification of putative iron-utilization genes in Acinetobacter baumannii and their distribution among a genotypically diverse collection of clinical isolates. Res Microbiol 2011;162(3):279–84. Doi: 10. 1016/j.resmic.2010.10.010

Cook-Libin S, Sykes EME, Kornelsen V, et al. Iron acquisition mechanisms and their role in the virulence of Acinetobacter baumannii. Infect Immun. 2022;90 (10):e0022322. Doi: 10.1128/iai.00223-22.

Artuso I, Poddar H, Evans BA, et al. Genomics of Acinetobacter baumannii iron uptake. MicrobGenom. 2023;9(8):mgen001080. doi: 10.1099/mgen.0. 001080

Álvarez FL, Vázquez-Ucha JC, Martínez-Guitián M, et al. Pneumonia infection in mice reveals the involvement of the feoA gene in the pathogenesis of Acinetobacter baumannii. Virulence. 2018;9 (1):496–509. Doi: 10.1080/21505594.2017.

Martínez-Guitian M, Vazquez-Ucha JC, Alvarez-Fraga L. Global transcriptomic analysis during Murine Pneumonia Infection Reveals New Virulence Factors in Acinetobacter baumannii. J Infect Dis2021;223(8):1356–1366.

Sheldon JR,Skaar EP,Weiss DS.Acinetobacter baumanniican uses multiple siderophores for iron acquisition, but only acinetobacter is required for virulence. PLOS Pathog. 2020;16(10):e1008995. Doi: 10.1371/jour nal.ppat.1008995

Conde-Perez K, Vazquez-Ucha JC, Alvarez-Fraga L, et al. In-depth analysis of the role of the Acinetobactin cluster in the virulence of Acinetobacter baumannii. Front Microbiol. 2021;12:752070. Doi: 10.3389/fmicb. 2021.752070

Shapiro JA, Wencewicz TA. Acinetobactin Isomerization Enables Adaptive iron acquisition in Acinetobacter baumannii through pH-triggered side sophomore swapping. ACS Infect Dis. 2016;2(2):157–168. Doi: 10.1021/acsinfecdis.5b00145

Hesse LE, Lonergan ZR, Beavers WN, et al. The Acinetobacter baumannii Znu System Overcomes Host-Imposed Nutrient Zinc Limitation. Infect Immun. 2019;87(12):e00746–19.

Nairn BL, Lonergan ZR, Wang J, et al. The response of Acinetobacter baumanniito zinc starvation. Cell Host Microbe. 2016;19(6):826–836.

Downloads

Published

2024-09-30

How to Cite

Anwar, M. S. ., Biswas, P. P. ., & Sen, A. . (2024). A LITERATURE REVIEW ON Acinetobacter baumannii AND THE CHALLENGES: INSIGHTS INTO VARIOUS CLINICAL AND PATHOPHYSIOLOGICAL CONDITIONS WITH REFERENCE TO BIOFILM FORMATION. Student’s Journal of Health Research Africa, 5(9), 14. https://doi.org/10.51168/sjhrafrica.v5i9.1388

Issue

Section

Section of Microbiology Research