

Case Report

## A CASE CONTROL STUDY TO COMPARE THE EFFICACY OF PRE-OPERATIVE INTRAVENOUS TRANEXAMIC ACID IN THE CONTROL OF INTRAOPERATIVE TONSILLECTOMY BLEEDING.

Dr. Sathiyamoorthy Karunakaran<sup>1</sup>, Dr. Aishwarya Panneerselvam<sup>2</sup>, Dr. Tamilarasi Panneerselvam<sup>3</sup>

<sup>1</sup>Assistant Professor, MS Ent, PSP Medical College and Hospital.

<sup>2</sup>Assistant Professor, MD Anaesthesia, ACS Medical College and Hospital.

<sup>3</sup>Senior Resident, MD, Immunohematology and Transfusion Medicine, SRM Medical College and Hospital.

## ABSTRACT INTRODUCTION

Tonsillectomy is one of the most performed surgeries all over the world. Modern methodologies, use of bipolar scissor dissection, bipolar radio frequency ablation, harmonic scalpel, micro-debrider endoscopic tonsillectomy, laser tonsillectomy, and the like, have revolutionized the tonsillectomy procedure. To compare the efficacy of preoperative intravenous Tranexamic acid in the control of intraoperative tonsillectomy bleeding.

#### **MATERIALS AND METHODS:**

This prospective clinical study was conducted in the Department of Otorhinolaryngology and Head and Neck Surgery, Adichunchanagiri Institute of Medical Sciences, B. G. Nagara, Mandya District. The study period was from November 2016 to May 2018. A sample size of a minimum of 107 patients who satisfied the inclusion criteria was included in the study. Dissection tonsillectomy was done in all cases. In the study group, pre-operative intravenous Tranexamic acid will be given in the dosage of 10 mg/kg/body weight.

#### **RESULTS:**

The most common age group in the study and control group was 11-20 years. In the study group, 30 females (56.6%) and 23 males (43.4%), and in the control group, 33 females (61.1%) and 21 males (38.9%). The grading was done according to Brodsky's grading scale; in the study group, maximum cases (39.6%) had grade 3 tonsillar hypertrophy, and in the control group, maximum cases (31.5%) had grade 2 and grade 3, respectively. Mean intraoperative blood loss was 135.96 ml in the study group and 159.81 ml in the control group. P value was calculated to be <0.001, thus statistically proving significance.

#### **CONCLUSION:**

In this study, we have proved the efficacy of pre-operative intravenous use of Tranexamic acid in the control of intraoperative tonsillectomy bleeding with no recorded side effects. No side effects of tranexamic acid were noted during the study. So, it is a safe drug to be used.

**KEYWORDS:** Tonsillectomy, Tranexamic acid, post-tonsillectomy hemorrhage; Tonsillar hemorrhage; blood loss; antifibrinolytic drug.

Submitted: September 14, 2025 Accepted: October 29, 2025 Published: December 01, 2025

Corresponding Author: Dr. Sathiyamoorthy Karunakaran

Email: mmdcdentalomfp@gmail.com

Assistant Professor, MS Ent, PSP Medical College and Hospital.

#### **INTRODUCTION**

Celsus, the first person who reported excision of tonsils, described the technique as "the tonsils are loosened by scraping around them and then torn out". Achievement of haemostasis is done using a mouthwash made of vinegar and a medicated paint on the tonsillar fossa. Later, Altius of

Amida (Tigris) explained another technique for tonsillectomy in the sixth century (first half), where a hook snared the tonsil and a knife amputated it. He forewarned of haemorrhage, which turned out to be fatal if excision was too deep.



Case Report

Tranexamic acid (trans-4-aminomethyl-cyclohexane carboxylic acid) is a relatively safe antifibrinolytic drug with weak non-competitive inhibition of plasmin at high concentrations. Native human plasminogen contains one lysine binding site with high affinity for tranexamic acid (kd =  $1.1 \mu \text{mol-}1$ ) and four or five with low affinity (kd = 750umol 1-1). The binding of plasminogen and of the heavy chain of plasmin to fibrin monomer is also mediated through the lysine binding sites of plasminogen to specific lysine residues of fibrin;; this interaction is virtually completely blocked by the synthetic antifibrinolytic amino acids. Hence, this study is undertaken to compare the efficacy of pre-operative intravenous use of Tranexamic acid in the control of intraoperative tonsillectomy bleeding.

#### **METHODOLOGY:**

This case–control observational study was conducted, and data were collected from the Department of Otorhinolaryngology at Adichunchanagiri Institute of Medical Sciences, Mandya district, during the period from November 2016 to May 2018. All cases admitted and operated for Tonsillectomy during the study period were included in the study. A total of 107 cases were analysed and included in the study.

#### **Inclusion criteria:**

1) Patients of age groups (above 4 years and below 50 years) and all sexes.

- Patients undergoing tonsillectomy for Chronic tonsillitis and Tonsillectomy for any other indications. Exclusion criteria:
- 1) Patients undergoing adenotonsillectomy,
- 2) Known allergy to Tranexamic acid,
- 3) Participation in any other clinical trial,
- 4) Disturbances of colour vision,
- 5) Preoperative use of anticoagulant therapy within 5 days of surgery,
- Fibrinolytic disorders requiring intra-operative anti-fibrinolytic treatment,
- 7) Haematological diseases (thromboembolic events, haemoglobinopathy, coagulopathy, thrombocytopenia, and haemolytic disease).

Tonsillectomy was performed by the dissection and snare method on both sides. All cases included in the study were randomized in equal proportions into a control group and a study group. In the study group, pre-operative intravenous tranexamic acid was given in the dosage of 10 mg kg-1 body weight, and in the control group, 5cc of plain saline was injected intravenously before surgery. Blinding was achieved as the patient did not know which group he/she were operated on. Statistical analysis was done using mean, standard deviation, frequency, percentage, Chi-square, Unpaired t-test, and graphs. Data entry was done in MS Excel, and analysis was done using IBM SPSS version 22.

#### **ETHICAL CONSIDERATION:**

ADICHUNCHANAGIRI INSTITUTE OF MEDICAL SCIENCES, No. AIMS/IEC/1545/2016-2017



FIG 1. Tonsillectomy is being performed in our operating theatre



**FIG 2: INSTRUMENTS** 



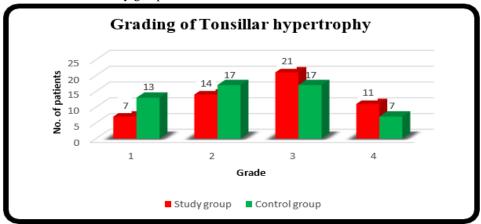


**Case Report** 

#### **RESULTS:**

Results have been tabulated below

### Grading of tonsillar hypertrophy:


Page | 4

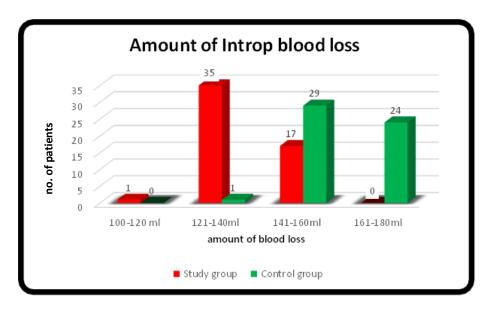
**Table 1. Grading of Tonsillar hypertrophy** 

| Grade | No. of patie | No. of patients |       | Percentage |  |
|-------|--------------|-----------------|-------|------------|--|
|       | Study        | Control         | Study | Control    |  |
| 1     | 7            | 13              | 13.3  | 24         |  |
| 2     | 14           | 17              | 26.4  | 31.5       |  |
| 3     | 21           | 17              | 39.6  | 31.5       |  |
| 4     | 11           | 7               | 20.7  | 13         |  |
| Total | 53           | 54              | 100   | 100        |  |

On applying Brodsky's grading scale for tonsillar hypertrophy, in the study group maximum grading was grade 3 in 21 patients, constituting 39.6% of cases, grade 2 followed in around 14 patients, constituting 26.4% of cases. Grade 4 was seen in 11 patients, which constituted 20.7% of cases. Grade 1 was seen in 7 patients, which constituted 13.3% of the total cases in the study group. In the control

group maximum grade was grade 2, and grade 3 had 17 patients, constituting 31.5% of the total cases. Grade 1 followed in around 13 patients, which constituted 24% of cases. Grade 4 was seen in 7 patients, which constituted 13% of the total cases in the control group. In both groups, Grade 0 was not encountered during the duration of the study.




**Graph 1. Grading of Tonsillar hypertrophy** 

Amount of Intraoperative blood loss:



**Table 2. Amount of Intraoperative blood loss** 

| Amount of intraoperative blood loss | Study group     |         | Control group   |         |  |
|-------------------------------------|-----------------|---------|-----------------|---------|--|
|                                     | No. of patients | Percent | No. of patients | Percent |  |
| 100-120 ml                          | 1               | 2       | 0               | 0       |  |
| 121-140ml                           | 35              | 66      | 1               | 1.8     |  |
| 141-160ml                           | 17              | 32      | 29              | 53.7    |  |
| 161-180ml                           | 0               | 0       | 24              | 44.5    |  |
| Total                               | 53              | 100     | 54              | 100     |  |



**Graph 2. Amount of Intraoperative blood loss** 

#### **Mean Blood loss:**

Blood loss was found to be higher in the control group. On applying the Unpaired t-test (t=-14.855, df=104.242, P value

<0.001), the mean amount of intraoperative blood loss between the study group and control group was found to be significant.

#### **TABLE 3: Mean blood loss**

| Mean amount of Intraoperative blood loss | Study Group                  | Control Group               |
|------------------------------------------|------------------------------|-----------------------------|
|                                          | 135.96 ml ( <b>SD:8.57</b> ) | 159.81ml ( <b>SD:8.02</b> ) |

#### **Discussion**

Tonsillectomy is an age-old procedure and is one of the basic surgeries done by the otorhinolaryngologists very

frequently. The first tonsillectomy was performed in 1000. C., and the surgery gained popularity in the 1900s. Presently, various instruments are available for performing



this surgery with ease, but the dissection and snare method is still widely followed. The main complication observed

Page | 6

during tonsillectomy is haemorrhage, which is the major cause of morbidity and mortality.

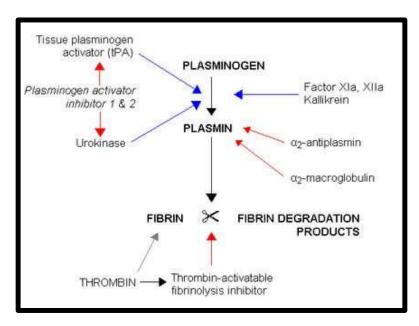



FIG 3. FIBRINOLYSIS (SIMPLIFIED) Blue arrows denote stimulation, and the red arrows' inhibition.

Tranexamic acid (trans-4-aminomethyl-cyclohexane carboxylic acid) is a relatively safe anti-fibrinolytic drug with weak non-competitive inhibition of plasmin at high concentrations. Native human plasminogen contains one lysine binding site with high affinity for tranexamic acid (k =1.1 $\mu$ mol 1<sup>-1</sup>) and four or five with low affinity (k =750µmol 1<sup>-1</sup>). The binding of plasminogen and of the heavy chain of plasmin to fibrin monomer is also mediated through the lysine binding sites of plasminogen to specific lysine residues of fibrin;; this interaction is virtually completely blocked by the synthetic antifibrinolytic amino acids. It is primarily the high-affinity lysine binding site of plasminogen that is involved in its binding to fibrin;; saturation of this binding site with tranexamic acid displaces plasminogen from the fibrin surface. The study aimed to compare the efficacy of preoperative intravenous Tranexamic acid in the control of intraoperative tonsillectomy bleeding.

#### **Age Distribution:**

In our study, out of 107 cases, the ages of the patients varied from 5 to 38 years. In the study group, among 53 patients, the majority of the cases, with a frequency of 17 cases, were in the age groups <10, 11-20, and 21-30 years. In the control group, among 54 patients, the majority of the cases were in the 11-20 years age group, with a frequency of 19 cases. This was in accordance with the study done by Ajay George et al, where maximum cases (out of 100 cases, 24 in the study group and 23 in the control group) were encountered between the 11-20 years age group. In a study done by UP Santhosh et al, the majority of cases were in the 10-15-year age group. A study conducted by F Sarkas also had the majority of cases in the same age group, i.e., 11-20 years old. It implies the preponderance of the younger age group towards the disease.



**Case Report** 

#### **Table 4. Age Distribution comparison**

| Authors of the study series | Age group (in years) | Age group (in years) with the majority of cases |  |  |
|-----------------------------|----------------------|-------------------------------------------------|--|--|
| Ajay George et al           | Study group          | Control group                                   |  |  |
| F Sarkas et al              | 11-20 years          | 11-20 years                                     |  |  |
| UP Santhosh et al           | 11-20 years          | 11-20 years                                     |  |  |
|                             | 10-15 years          | 10-15 years                                     |  |  |

#### **Gender Distribution:**

In our study, we had 107 case subjects, out of which in the study group (53 cases) 30 were females and 23 males in the study group (54 cases), 33 females and 21 males. The male-to-female ratio was 0.77 and 0.64 in the study group and

control group, respectively. This agrees with the sex distribution in the study done by Ajay George et al and F Sarkas et al, where the females in the study group were 27 and in the control group were 21, and the males in the study group were 23 and in the control group were 29.

#### **Table 5. Gender Distribution**

| Authors of the     | No. of females |         | No. of females |         |
|--------------------|----------------|---------|----------------|---------|
| study series       | Study          | Control | Study          | Control |
| Ajay George et al. | 27             | 21      | 23             | 29      |
| F Sarkas et al     | 27             | 21      | 23             | 29      |

#### **Amount of Intraoperative blood loss:**

In our study, the mean amount of intraoperative blood loss in the study group was 135.96 ml, and in the control group was 159.81 ml. Thus, the reduction in the intraoperative blood loss in the study group was less compared to the control group. This was in accordance with the study done by Ajay George et al, the mean blood loss in the study group was 36.64ml, and in the control group was 66.32ml. In a

study done by UP Santhosh et al, the mean blood loss in the study group was 66.12ml and in the control group was 106.84 ml. A study done by F Sarkas et al, the mean blood loss in the study group was 36.64ml, and in the control group was 66.32ml. This reflected the fact that pre-operative use of Pro coagulants like Tranexamic acid shows a reduction in the intraoperative blood loss and has the advantage of achieving haemostasis faster and decreasing the time taken for the tonsillectomy procedure.

**Table 6: Amount of Intraoperative blood loss** 

| Authors of the study series | Mean intraoperative blood loss (ml) |               |  |
|-----------------------------|-------------------------------------|---------------|--|
|                             | Study group                         | Control group |  |
| Ajay George et al.          | 36.64                               | 66.32         |  |
| UP Santhosh et al.          | 66.12                               | 106.84        |  |
| F Sarkas et al.             | 36.64                               | 66.32         |  |

A similar study was done by Castelli G and Vogts E, which included a total of 80 patients randomized equally into the study and control groups, and noticed that a statistically significant reduction of blood loss (28%) was observed in

the study group when compared to the control group (44.75%) during the intraoperative period. Though the complication rate was high in both the study and control groups in their study, there was a reduction of blood loss in





Case Report

the study group. A study done by PJ Robb and G Thorning, had followed 476 children between the ages of 3 and 16 years who underwent Coblation tonsillectomy after receiving intravenous tranexamic acid at a dose of 10-15 mg/kg, showing a reduction in primary perioperative and postoperative haemorrhage and facilitating day case discharge after tonsillectomy surgery.

# Comparison with similar studies done for other surgeries:

Similar studies done for a variety of surgeries have shown the efficacy of tranexamic acid in the reduction of operative bleeding. In these studies, there were no side effects of tranexamic acid reported. **Schott U., Jacobsson A. et al.** A study done in prostatectomy showed a reduction of blood loss (52.94%) after using Tranexamic acid. **Mayur G., Purvi P. et al.** A study done in caesarean section, using Tranexamic acid, showed a reduction of blood loss (43.09%). **Hiippala S., Strid L. et al.** A study done in total knee arthroplasty showed a reduction of blood loss (45.32%). **Aflatoon MA. et al.** A study done in coronary bypass showed a reduction of blood loss (33.00%).

Table 7. Comparison with similar studies done for other surgeries

| Study parameters | Schott U.,         | Mayur G.,        | Hiippala S.,    | Aflatoon MA. et al. |
|------------------|--------------------|------------------|-----------------|---------------------|
|                  | Jacobsson A. et al | Purvi P. et al.  | Strid L. et al. |                     |
|                  | Prostatectomy      | Cesarean section | Total knee      | Coronary bypass     |
|                  |                    |                  | arthroplasty    |                     |
| Sample size      | 40                 | 100              | 28              | 66                  |
| Study/control    | 20/20              | 50/50            | 15/13           | 33/33               |
| Reduction in     | 52.94%             | 43.09%           | 45.32%          | 33.00%              |
| Bleeding         |                    |                  |                 |                     |

# Comparison with similar studies done for certain haemorrhagic conditions:

Tranexamic acid is not only used for operative procedures but also has been used to reduce bleeding in certain non-operative conditions. In these studies, there was also no side effect of Tranexamic acid reported. **Biggs JC., Hugh TB.** et al. A study done in non-operative conditions, like Upper

Gastrointestinal bleeding, showed a reduction of blood loss using Tranexamic acid and was proven using criteria like transfusion requirements, transfusion rates, and surgical intervention rate, as it is not possible to collect blood in upper gastrointestinal bleeding accurately. **Sheila T., Callender et al.** A study done in a condition like menorrhagia showed a 34.05% reduction in blood loss after using Tranexamic acid.

Table 8. Comparison with similar studies done for certain haemorrhagic conditions

| Study parameters      | Biggs JC., Hugh TB. et al.      | Sheila T., Callender et al. |
|-----------------------|---------------------------------|-----------------------------|
| Condition             | Upper Gastrointestinal bleeding | Menorrhagia                 |
| Sample size           | 200                             | 32                          |
| Study/Control         | 103/97                          | 16/16                       |
| Reduction in bleeding | Bleeding reduction was          | 34.05%                      |

## Studies showing doubtful efficacy of tranexamic acid:

Despite the overwhelming evidence in favour of the efficacy of tranexamic acid in the reduction of tonsillectomy bleeding, there have been studies where tranexamic acid has not proven to be useful. In some studies, tranexamic acid has not reduced operative bleeding. However, even in these studies, Tranexamic acid has reduced post-operative bleeding, hence reducing morbidity. This could be because tranexamic acid may not affect major vessel bleeding and is more effective in controlling capillary oozing. In these studies, there was also no side effect of Tranexamic acid reported. Erik L., Joanne G., et al. A study done in a Total



hip replacement surgery showed a 10.96% reduction in intraoperative blood loss and 56.15% in postoperative blood loss. **Senghore N., Harris M.** A study done in a dental

procedure (third molar extraction) showed a 15.93% reduction in intraoperative blood loss and 54.17% in postoperative blood loss.

**Table 9: Studies showing doubtful efficacy of tranexamic acid:** 

| Study parameters      | Erik L., Joanne G. et al. |         | Senghore N., Harris M. |         |
|-----------------------|---------------------------|---------|------------------------|---------|
| Surgery               | Total Hip replacement     |         | Third molar extraction |         |
| Sample size           | 39                        |         | 52                     |         |
| Study/Control         | 20/19                     |         | 26/26                  |         |
| Reduction in bleeding | Intra OP                  | Post op | Intra OP               | Post OP |
|                       | 10.96%                    | 56.15%  | 15.93%                 | 54.17%  |

#### **CONCLUSION**

Tonsillectomy is the most common procedure performed in the Otorhinolaryngology department. The procedure has been in practice for more than a century now. Haemorrhage has been the most consistent complication associated with the procedure. Various means to achieve haemostasis are presently in practice, with each method having its own advantages and disadvantages. Tranexamic acid is a plasminogen inhibitor that has been successfully used to control bleeding in a variety of surgeries. In this study, we have proved the efficacy of Pre-operative intravenous use of Tranexamic acid in the control of intra-operative tonsillectomy bleeding with no recorded side effects.

The present study was conducted on 107 subjects who presented to the ENT outpatient department of Adichunchanagiri Institute of Medical Sciences, B.G. Nagara, with chronic tonsillitis from November 2016 to May 2018. The most common age group in the study and control group was 11-20 years. In the study group, 30 females (56.6%) and 23 males (43.4%), and in the control group, 33 females (61.1%) and 21 males (38.9%). The grading was done according to Brodsky's grading scale; in the study group, maximum cases (39.6%) had grade 3 tonsillar hypertrophy, and in the control group, maximum cases (31.5%) had grade 2 and grade 3, respectively. The intraoperative blood loss in the study group was found to be less than 160ml in all cases, while in the control group, around 44.5% cases had more than 160ml blood loss. Mean intraoperative blood loss was 135.96 mL in the study group and 159.81 mL in the control group. P value was calculated to be <0.001, thus statistically proving significance.

#### **Source of funding:**

The study had no funding.

#### **Conflict of interest:**

The authors declare no conflict of interest.

#### Refferences

- Kayvani K. Frequency and predictors of tonsil surgery. University of Ontario Institute of Technology (Canada); 2018. (doi: not available)
- Feldmann H. 2000-year history of tonsillectomy. Images from the history of otorhinolaryngology, highlighted by instruments from the collection of the German Medical History Museum in Ingolstadt. Laryngo-rhino-otologie. 1997 Dec 1;76(12):751-60. https://doi.org/10.1055/s-2007-997520
- Waitrak BJ, Willging JP. Harmonic scalpel for tonsillectomy. The laryngoscope. 2002 Aug;112(S100):14-6. https://doi.org/10.1002/lary.5541121406
- 4. Júnior JF, Hermann DR, Américo RR, Stamm RG, Hirata CW. A brief history of tonsillectomy. Int Arch Otorhinolaryngol. 2006;10(4):314-7. (doi: not available)
- 5. Weir N. Otorhinolaryngology. Postgraduate medical journal. 2000 Feb;76(892):65-9.
- 6. https://doi.org/10.1136/pmj.76.892.65
- Watts G. Utako Okamoto. The Lancet. 2016 Jun 4;387(10035):2286. https://doi.org/10.1016/S0140-6736(16)30697-3
- 8. Standring S, Ellis H, Healy J, Johnson D, Williams A, Collins P, Wigley C. Gray's anatomy: the anatomical basis of clinical practice. American



Case Report

- journal of neuroradiology. 2005 Nov;26(10):2703. PMCID: PMC7976199
- 9. Wadie M, Adam SI, Sasaki CT. Development, anatomy, and physiology of the larynx. In Principles of deglutition: a multidisciplinary text for swallowing and its disorders, 2012 Jul 25 (pp. 175-197). New York, NY: Springer New York. (doi: not available)

https://doi.org/10.1007/978-1-4614-3794-9\_13

- 10. Richardson MA. Sore throat, tonsillitis, and adenoiditis. Medical Clinics of North America. 1999 Jan 1;83(1):75-83. https://doi.org/10.1016/S0025-7125(05)70088-2
- Shido F, Kobayashi K, Yamanaka N. Cell-size distribution of human tonsillar lymphocytes. Archives of Oto-Rhino-Laryngology. 1984 Apr;239(3):211-8. https://doi.org/10.1007/BF00464246
- Yamanaka N, Matsuyama H, Harabuchi Y, Kataura A. Distribution of lymphoid cells in tonsillar compartments in relation to infection and age: a quantitative study using image analysis. Acta oto-laryngologica. 1992 Jan 1;112(1):128-37. https://doi.org/10.3109/00016489209100794
- Kuki K, Hotomi M, Yamanaka N. A study of apoptosis in the human palatine tonsil. Acta otolaryngologica. Supplementum. 1996;523:68-70. PMID: 9082813
- Bergler W, Adam S, GROSS HJ, Hörmann K, Schwartz-Albiez R. Age-dependent altered proportions in subpopulations of tonsillar lymphocytes. Clinical & Experimental Immunology. 1999 Apr;116(1):09-18. https://doi.org/10.1046/j.1365-2249.1999.00850.x
- 15. Brandtzaeg P, Surjan L, Berdal P. Immunoglobulin systems of human tonsils. I. Control subjects of various ages: qualification of Ig-producing cells, tonsillar morphometry, and serum Ig concentrations. Clinical and Experimental Immunology. 1978 Mar;31(3):367. PMID: 350457
- Karchev T. Specialization of tonsils as analyzers of the human immune system. Acta Oto-Laryngologica. 1988 Jan 1;105(sup454):23-7. https://doi.org/10.3109/00016488809124999
- 17. Brandtzaeg P, Halstensen TS. Immunology and Immunopathology of Tonsils<sup>1</sup>. InTonsils: A Clinical Oriented Update: 2nd International

- Symposium on Tonsils, Pavia, September 1991 1992 Sep 23 (Vol. 47, p. 62). Karger Medical and Scientific Publishers. https://doi.org/10.1159/000421721
- 18. Yamanaka N, Yokoyama M, Kawaguchi T, Tamaki K, Ishii H. Role of gamma delta-T cells in the palatine tonsil. Acta Otolaryngol 1996;523:90-3. PMID: 9082821
- Brandtzaeg P. Regionalized immune function of tonsils and adenoids. Immunology today. 1999
   Aug 1;20(8):383-4. https://doi.org/10.1016/S0167-5699(99)01498-X
- Andersson J, Abrams J, Björk L, Funa K, Litton M, Agren K, Andersson U. Concomitant in vivo production of 19 different cytokines in human tonsils. Immunology. 1994 Sep;83(1):16. PMID: 7821961
- Harabuchi Y, Wakashima J, Murakata H, Yoshioka I, Yokoyama Y, Kataura A. Cytokine expression and production by tonsillar lymphocytes. Acta oto-laryngologica. Supplementum. 1996 Jan 1;523:75-7. PMID: 9082815
- Perry M, Whyte A. Immunology of the tonsils. Immunology today. 1998 Sep 1;19(9):414-21. https://doi.org/10.1016/S0167-5699(98)01307-3
- Banchereau J, Brière F, Liu YJ, Rousset F. Molecular control of B lymphocyte growth and differentiation. Stem cells. 1994;12(3):278-88. https://doi.org/10.1002/stem.5530120304
- Liu YJ, Barthélémy C, De Bouteiller O, Arpin C, Isabelle D, Banchereau J. Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid upregulation of B7-1 and B7-2. Immunity. 1995 Mar 1;2(3):239-48. https://doi.org/10.1016/1074-7613(95)90048-9
- 25. Korsrud FR, Brandtzaeg P. Immune systems of human nasopharyngeal and palatine tonsils: histomorphometry of lymphoid components and quantification of immunoglobulin-producing cells in health and disease. Clinical and Experimental Immunology. 1980 Feb;39(2):361. PMID: 6993071
- 26. Brandtzaeg P. Immune functions and immunopathology of palatine and nasopharyngeal tonsils. Immunology of the Ear. 1987:63-106. (doi: not available)



- Quiding-Järbrink M, Granström G, Nordström I, Holmgren J, Czerkinsky C. Induction of compartmentalized B-cell responses in human tonsils. Infection and immunity. 1995 Mar;63(3):853-7.
  - https://doi.org/10.1128/iai.63.3.853-857.1995
- 28. Clark EA, Ledbetter JA. How B and T cells talk to each other. Nature. 1994 Feb 3;367(6462):425-8. https://doi.org/10.1038/367425a0
- Schriever F, Korinth D, Salahi A, Lefterova P, Schmidt-Wolf IG, Behr SI. Human T lymphocytes bind to germinal centers of human tonsils via integrin α4/VCAM-1 and LFA-1/ICAM-1 and-2. European journal of immunology. 1997 Jan;27(1):35-9.
  - https://doi.org/10.1002/eji.1830270106
- Westermann J, Pabst R. Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system?. Immunology today. 1990 Jan 1;11:406-10. https://doi.org/10.1016/0167-5699(90)90160-B
- 31. Koornstra PJ, Duijvestijn AM, Vlek LF, Marres EH, van Breda Vriesman PJ. Tonsillar (Waldyer's ring equivalent) lymphoid tissue in the rat: lymphocyte subset binding to high endothelial venules (HEV) and in situ distribution. Regional immunology. 1992 Nov 1;4(6):401-8. PMID: 1297410
- Baekkevold ES, Jahnsen FL, Johansen FE, Bakke O, Gaudernack G, Brandtzaeg P, Haraldsen G. Culture characterization of differentiated high endothelial venule cells from human tonsils. Laboratory investigation: a journal of technical methods and pathology. 1999 Mar;79(3):327-36. PMID: 10092069
- 33. Baekkevold ES, Yamanaka T, Palframan RT, Carlsen HS, Reinholt FP, Von Andrian UH, Brandtzaeg P, Haraldsen G. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. The Journal of Experimental Medicine. 2001 May 7;193(9):1105-12.
  - https://doi.org/10.1084/jem.193.9.1105
- 34. Nowara E, Pabst R. Die Gaumentonsillen als Teil des lymphatischen Systems. Ein- und Ausstrom neugebildeter Lymphozyten. HNO. Hals-, Nasen-, Ohrenärzte. 1986;34(4):164-9.

- 35. Girard JP, Springer TA. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunology today. 1995 Sep 1;16(9):449-57. https://doi.org/10.1016/0167-5699(95)80023-9
- Westermann J, Walter S, Nagahori Y, Heerwagen C, Miyasaka M, Pabst R. Blood leucocyte subsets of the rat: expression of adhesion molecules and localization within high endothelial venules. Scandinavian journal of immunology. 1996 Mar;43(3):297-303. https://doi.org/10.1046/j.1365-3083.1996.d01-38 x
- 37. Zidan, Jecker, Pabst. Differences in lymphocyte subsets in the wall of high endothelial venules and the lymphatics of human palatine tonsils. Scandinavian Journal of Immunology. 2000 Apr;51(4):372-6. https://doi.org/10.1046/j.1365-3083.2000.00681.x
- 38. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. The Journal of Experimental Medicine. 2000 Dec 4;192(11):1553-62. https://doi.org/10.1084/jem.192.11.1553
- 39. Casamayor-Palleja M, Mondiere P, Amara A, Bella C, Dieu-Nosjean MC, Caux C, Defrance T. Expression of macrophage inflammatory protein-3α, stromal cell-derived factor-1, and B-cell-attracting chemokine-1 identifies the tonsil crypt as an attractive site for B cells. Blood, The Journal of the American Society of Hematology. 2001 Jun 15;97(12):3992-4.
  - https://doi.org/10.1182/blood.V97.12.3992
- Surjan Jr L. Tonsils and lympho-epithelial structures in the pharynx as immuno-barriers. Acta Oto-laryngologica. 1987 May 1;103(5-6):369-72. PMID: 3303820
- 41. Scadding GK. Immunology of the tonsil: a review. Journal of the Royal Society of Medicine. 1990 Feb;83(2):104-7.
  - https://doi.org/10.1177/014107689008300216
- 42. Ying, MD. Immunological basis of indications for tonsillectomy and adenoidectomy. Acta Oto-Laryngologica. 1988 Jan 1;105(sup454):279-85. https://doi.org/10.3109/00016488809125041



- 43. Witt RL. The tonsil and adenoid controversy. Delaware Medical Journal. 1989 Jun 1;61(6):289-94. PMID: 2666179
- 44. Böck A, Popp W, Herkner KR. Tonsillectomy and the immune system: a long-term follow-up comparison between tonsillectomized and non-tonsillectomized children. European archives of Oto-rhino-laryngology. 1994 Nov;251(7):423-7. https://doi.org/10.1007/BF00181969
- 45. Harper SJ, Allen AC, Bene MC, Pringle JH, Faure G, Lauder I, Feehally J. Increased dimeric IgA-producing B cells in tonsils in IgA nephropathy determined by in situ hybridization for J chain mRNA. Clinical & Experimental Immunology. 1995 Sep;101(3):442-8. https://doi.org/10.1111/j.1365-2249.1995.tb03132.x
- Hotta O, Taguma Y, Yoshizawa N, Oda T, Nishiyama J, Yusa N, Chiba S, Horigome I, Sudo K, Tomioka S. Long-term effects of intensive therapy combined with tonsillectomy in patients with IgA nephropathy. Acta oto-laryngologica. Supplementum. 1996 Jan 1;523:165-8. PMID: 9082770
- 47. Mattila, Tarkkanen. Differentiation of T lymphocytes in the human adenoid as measured by the expression of CD45 isoforms. Scandinavian journal of immunology. 1998 Jul;48(1):59-64. https://doi.org/10.1046/j.1365-3083.1998.00371.x
- Pantaleo G, Graziosi C, Butini L, Pizzo PA, Schnittman SM, Kotler DP, Fauci AS. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proceedings of the National Academy of Sciences. 1991 Nov 1;88(21):9838-42. https://doi.org/10.1073/pnas.88.21.9838
- 49. Frankel SS, Tenner-Racz K, Racz P, Wenig BM, Hansen CH, Heffner D, Nelson AM, Pope M,

- Steinman RM. Active replication of HIV-1 at the lymphoepithelial surface of the tonsil. The American journal of pathology. 1997 Jul;151(1):89. PMID: 9212735
- Kornblut AD. Non-neoplastic diseases of the tonsils and adenoids. Otolaryngology. 1991;3:2129-47.
- 51. Scott-Brown WG. Scott-Brown's Otorhinolaryngology, Head and Neck Surgery. Hodder Education; 2008.
- 52. Ebell MH, Smith MA, Barry HC, Ives K, Carey M. Does this patient have strep throat?. Jama. 2000 Dec 13;284(22):2912-8. https://doi.org/10.1001/jama.284.22.2912
- Jain A, Sahni JK. Polysomnographic studies in children undergoing adenoidectomy and/or tonsillectomy. The Journal of Laryngology & Otology. 2002 Sep;116(9):711-5. https://doi.org/10.1258/002221502760238019
- Nieminen P, Tolonen U, Löppönen H. Snoring and obstructive sleep apnea in children: a 6-month follow-up study. Archives of Otolaryngology-Head & Neck Surgery. 2000 Apr 1;126(4):481-6. https://doi.org/10.1001/archotol.126.4.481
- Wang RC, Elkins TP, Keech D, Wauquier A, Hubbard D. Accuracy of clinical evaluation in pediatric obstructive sleep apnea. Otolaryngology--Head and Neck Surgery. 1998 Jan;118(1):69-73. https://doi.org/10.1016/S0194-5998(98)70377-8
- 56. Suen JS, Arnold JE, Brooks LJ. Adenotonsillectomy for treatment of obstructive sleep apnea in children. Archives of Otolaryngology-Head & Neck Surgery. 1995 May 1;121(5):525-30. https://doi.org/10.1001/archotol.1995.018900500

23005



#### **PUBLISHER DETAILS:**

## Student's Journal of Health Research (SJHR)

(ISSN 2709-9997) Online (ISSN 3006-1059) Print

Category: Non-Governmental & Non-profit Organization

Email: studentsjournal2020@gmail.com

WhatsApp: +256 775 434 261

Location: Scholar's Summit Nakigalala, P. O. Box 701432,

**Entebbe Uganda, East Africa** 

